

Developing an AVHRR-based CDR of TOA radiative fluxes within the CMSAF Project: SW fluxes

Akkermans, T., Clerbaux, N.

34th CERES Science Team Meeting

Virtual meeting, September 15-18, 2020

<tom.akkermans@meteo.be>

Table of contents

1. Introduction

2. <u>Validation results:</u>

- 2.1. Instantaneous RSF (level-2)
- 2.2. Daily and monthly mean RSF (level-3) +Monthly mean diurnal cycle
- 2.3. Long term time series, stability

What is CLARA? "CM SAF cLoud, Albedo and RAdiation dataset from AVHRR data" (=Similar to Patmos-X)

- Polar orbiting satellites NOAA and MetOp
- FCDR from NOAA (Heidinger et al.,2010)
- Currently released versions:
 - CLARA-A1 (1982-2009)
 - CLARA-A2 (1982-2015)

Some of the modifications in upcoming version CLARA-A3:

- Inclusion of AVHRR-1 sensor (TIROS-N, NOAA-6, -8, -10): extension of time range to 1978-2019 i.e. 42yr
- Updated FCDR: new calibration for visible channels (latest PATMOS-x coefficients)
- Updated cloud treatment algorithms (NWCSAF/PPS v.2018; Karlsson et al.) **SMHI**
- Addition of new product "TOA radiative fluxes" -> this presentation

CMSAF 2.1. Validation instantaneous L2 RMI

Introduction

Validation results:

- 2.1. Instantaneous RSF (level-2)
- 2.2. Daily and monthly mean RSF (level-3) +Monthly mean diurnal cycle
- 2.3. Long term time series, stability

2.1. Validation instantaneous L2 PRMI

2.1. Validation instantaneous L2

- RI
- Validation is done on AVHRR-CERES "matched observations", i.e. that are collocated, coangular, and simultaneous. Those conditions are met when orbital planes from Terra/Aqua and NOAA-17/18/19 coïncide (2004, 2005, 2007, 2008, 2011, 2012).
- Method: TOA albedo+RSF is calculated for each AVHRR pixel. Subsequently, for each CERES-SSF footprint the matching AVHRR pixel values are averaged and the bias is calculated.
- Number of matched observations: about 66 million
- Biases are gridded in 5°x5° lat-lon boxes. Spatial spread of bias is quantified by bias-corrected RMSE.

2.1. Validation instantaneous L2 PRMI

CM SAF 2.2. Validation daily/monthly L3 PMI

Introduction

Validation results:

- 2.1. Instantaneous RSF (level-2)
- 2.2. Daily and monthly mean RSF (level-3) +Monthly mean diurnal cycle
- 2.3. Long term time series, stability

2.2. Validation daily/monthly L3 PMI

CMSAF 2.3. Validation longterm timeserie RMI

Introduction

Validation results:

- 2.1. Instantaneous RSF (level-2)
- 2.2. Daily and monthly mean RSF (level-3) +Monthly mean diurnal cycle
- 2.3. Long term time series, stability

Global monthly bias CLARA-A3 w.r.t. CERES (RSF)

Extra slides

1. Introduction

1. Introduction

- 1.1. CLARA-A3 TOA reflected solar flux ('RSF')
- 1.2. improvements/changes during last year

2. Validation results:

- 2.1. Instantaneous RSF (level-2)
- 2.2. Daily and monthly mean RSF (level-3) +Monthly mean diurnal cycle
- 2.3. Long term time series, stability

1. Introduction

1.2. Additions/improvements implemented during last year:

Spectral response corrections:

AVHRR	Channel 1		Channel 2		Channel 4		Channel 5	
<u>satellite</u>	slope	offset	slope	offset	slope	offset	slope	offset
tirosn	1.023	-1.449	1.006	0.085	1.003	-0.540	1.000	0.000
noaa5	1.009	-0.174	1.011	-0.102	0.999	0.236	1.000	0.000
noaa6	1.012	-0.027	1.003	-0.052	0.999	0.300	1.000	0.000
noaa7	1.009	-0.036	1.007	-0.007	1.000	-0.198	0.991	1.991
noaa8	1.010	-0.009	1.003	-0.048	0.999	0.201	1.000	0.000
	1 000	Λ Λ1 2	1 006	0.011	1 000	A 21 E	0000	2 770

- ADM interpolation between SZA,VZA,RAA bins now done on fluxes, not on anisotropic factors.
- ADM interpolation bias correction (Loeb et al. 2003):

$$\hat{F}'(\theta_o, \, \theta, \, \phi; \, h_{\text{sfc}}) = \frac{\pi I(\theta_o, \, \theta, \, \phi; \, h_{\text{sfc}})}{\tilde{R}_j(\theta_o, \, \theta, \, \phi; \, h_{\text{sfc}})} + \delta F_j(\theta_o, \, \theta, \, \phi; \, h_{\text{sfc}}), \quad (16)$$

- ADM: weighted scene types from discretized bins with cloudcover and COT:
 - E.g. cloud cover is 20%, so the anisotropic factor is calculated as weighted mean from anisotropic factors corresponding to the discretized scenetypes with respectively 0-25% and 25-50% cloud cover.

2.2. Validation daily/monthly L3 PRMI

2011

UTC (hours)

UTC (hours)

UTC (hours)

2.2. Validation daily/monthly L3 PRMI

2008

• 2008

Global daily statistics CLARA-A3 w.r.t. ERA-5 and CERES (RSF)

Global daily statistics CLARA-A3 w.r.t. CERES (RSF)

